DNA oxidation by charge transport in mitochondria.

نویسندگان

  • Edward J Merino
  • Jacqueline K Barton
چکیده

Sites of oxidative DNA damage in functioning mitochondria have been identified using a rhodium photooxidant as a probe. Here we show that a primer extension reaction can be used to monitor oxidative DNA damage directly in functioning mitochondria after photoreaction with a rhodium intercalator that penetrates the intact mitochondrial membrane. The complex [Rh(phi)2bpy]Cl3 (phi = 9,10-phenanthrenequinonediimine) binds to DNA within the mitochondria and, upon irradiation, initiates DNA oxidation reactions. Significantly, piperidine treatment of the mitochondria leads to protein-dependent primer extension stops spaced every approximately 20 base pairs. Hence, within the mitochondria, the DNA is well covered and packaged by proteins. Photolysis of the mitochondria containing [Rh(phi)2bpy]3+ leads to oxidative DNA damage at positions 260 and 298; both are mutational hot spots associated with cancers. The latter position is the 5'-nucleotide of conserved sequence block II and is critical to replication of the mitochondrial DNA. The oxidative damage is found to be DNA-mediated, utilizing a charge transport mechanism, as the Rh binding sites are spatially separated from the oxidation-prone regions. This long-range DNA-mediated oxidation occurs despite protein association. Indeed, the oxidation of the mitochondrial DNA leads not only to specific oxidative lesions, but also to a corresponding change in the protein-induced stops in the primer extension. Mitochondrial DNA damage promotes specific changes in protein-DNA contacts and is thus sensed by the mitochondrial protein machinery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxidation by DNA charge transport damages conserved sequence block II, a regulatory element in mitochondrial DNA.

Sites of oxidative damage in mitochondrial DNA have been identified on the basis of DNA-mediated charge transport. Our goal is to understand which sites in mitochondrial DNA are prone to oxidation at long range and whether such oxidative damage correlates with cancerous transformation. Here we show that a primer extension reaction can be used to monitor directly oxidative damage to authentic mi...

متن کامل

Diabetic Encephalopathy Affects Mitochondria and Axonal Transport Proteins

Introduction: Diabetic encephalopathy is described as any cognitive and memory impairments and associated with hippocampal degenerative changes, include neurodegenerative process and decreased number of living cell. Mitochondrial Diabetes (MD) appears fallowing activation of mutant mitochondrial DNA and is combination of diabetes and cognitive deficit. In this research we showed the correlation...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

Fatty acid binding protein facilitates sarcolemmal fatty acid transport but not mitochondrial oxidation in rat and human skeletal muscle.

The transport of long-chain fatty acids (LCFAs) across mitochondrial membranes is regulated by carnitine palmitoyltransferase I (CPTI) activity. However, it appears that additional fatty acid transport proteins, such as fatty acid translocase (FAT)/CD36, influence not only LCFA transport across the plasma membrane, but also LCFA transport into mitochondria. Plasma membrane-associated fatty acid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 47 6  شماره 

صفحات  -

تاریخ انتشار 2008